ALMOST 20 YEARS EXPERIENCE IN CREATING INNOVATIVE SCIENTIFIC SOLUTIONS

MCM (Mobil Composition of Matter)

MCM are customisable mesoporous silica, with uniform cylindrical pores in either a hexagonal arrangement (MCM-41) or cubic arrangement (MCM-48). Pore sizes can be adjusted to be from 20A to 500A lending these materials has a high surface area and large pore volume, perfect for loading large molecules such as proteins, or metals for catalysis, which may not be able to enter smaller pores of zeolites or other mesoporous silica. Additionally, MCM can be functionalised with amine groups, thiols, doped with aluminium and their hydrophobicity/hydrophilicity can be tuned by addition of silanol groups.

Glantreo has vast knowledge in the manufacture of Mesoporous Silica (MS). For almost 5 years we have supplied large quantities (up to kg quantites) of Mesoporous Silica to our Researcher and Industry partners.

In addition to the raw and functionalised materials we also offer all variations in pelletised formats. The pellets are available in 2mm x 5mm. Please enquire to discuss your requirements in more detail.

SEM MCM-41
SEM MCM-41

End Applications

❖ Chromatography
❖ Drug Delivery
❖ Hard Templating
❖ Immobilization of Bioactive Molecules
❖ Encapsulation
❖ Polymer Reinforcement
❖ Catalysis

MCM / SBA / MCF Type Materials – Product Data & References

MSDS

Mesoporous Silica Applications

Background Since their discovery in the late 1970s mesoporous silicas have attracted much attention due...

Glantreo GMP Silica Capability

Over the past 15 years Glantreo has established a proven capability of delivering silica based...

 

Typical Physical Properties

Particle TypeMCM-41MCM-48
Purity99.99%99.99%
Particle Sizes100um*10um & 150um* (MCM-48 Aluminosilicate)
Particle MorphologyHexagonalCubic
Pore Sizes25A & 30A* (MCM41-Aluminosilicate)25A & 30A* (MCM41-Aluminosilicate)
FormatsPowders & PelletsPowders & Pellets
ChemistriesRaw, Amine, Thiol Raw, Amine, Thiol
* Indicative values. The materials specification is a range in value.

Product Variations

Product CodeTypePore MorphologyFormatParticle SizePore SizePack SizeChemistry
PMCM4110025R-5MCM-41HexaganolPowder100um25A5gSilanol/Raw
PMCM4110025NH1-5MCM-41HexaganolPowder100um25A5gAmine
PMCM4110025SH1-5MCM-41HexaganolPowder100um25A5gThiol
PMCM4110025R-50MCM-41HexaganolPowder100um25A50gSilanol/Raw
PMCM4110025NH1-50MCM-41HexaganolPowder100um25A50gAmine
PMCM4110025SH1-50MCM-41HexaganolPowder100um25A50gThiol
PMCM41AL10030R-50MCM-41 AluminosilicateHexaganolPowder100um30A50gSilanol/Raw
PMCM41AL10030R-5MCM-41 AluminosilicateHexaganolPowder100um30A5gSilanol/Raw
PMCM41AL10030NH1-5MCM-41 AluminosilicateHexaganolPowder100um30A5gAmine
PMCM41AL10030SH1-5MCM-41 AluminosilicateHexaganolPowder100um30A5gThiol
PMCM41AL10030NH1-50MCM-41 AluminosilicateHexaganolPowder100um30A50gAmine
PMCM41AL10030SH1-50MCM-41 AluminosilicateHexaganolPowder100um30A50gThiol
PELMCM4110025R-5MCM-41 PelletsHexaganolPellets100um25A5gSilanol/Raw
PMCM481025R-5MCM-48CubicPowder10um25A5gSilanol/Raw
PMCM481025NH1-5MCM-48CubicPowder10um25A5gAmine
PMCM481025SH1-5MCM-48CubicPowder10um25A5gThiol
PMCM481025R-50MCM-48CubicPowder10um25A50gSilanol/Raw
PMCM481025NH1-50MCM-48CubicPowder10um25A50gAmine
PMCM481025SH1-50MCM-48CubicPowder10um25A50gThiol
PMCM48AL15030NH1-5MCM-48 AluminosilicateCubicPowder150um30A5gAmine
PMCM48AL15030R-5MCM-48 AluminosilicateCubicPowder150um30A5gSilanol/Raw
PMCM48AL15030SH1-5MCM-48 AluminosilicateCubicPowder150um30A5gThiol
PMCM48AL15030R-50MCM-48 AluminosilicateCubicPowder150um30A50gSilanol/Raw
PMCM48AL15030NH1-50MCM-48 AluminosilicateCubicPowder150um30A50gAmine
PMCM48AL15030SH1-50MCM-48 AluminosilicateCubicPowder150um30A50gThiol
PELMCM481025R-5MCM-48 PelletsCubicPellets10um25A5gSilanol/Raw

 

Citations using Glantreo’s materials

If you have published and cited Glantreo’s materials then click here to let us know.

Noreldeen H. Abdallah, Miriam Schlumpberger, Darragh A. Gaffney, John P. Hanrahan, Joseph M. Tobin, Edmond Magner, Comparison of mesoporous silicate supports for the immobilisation and activity of cytochrome c and lipase, Journal of Molecular Catalysis B: Enzymatic, Volume 108, October 2014, Pages 82-88, ISSN 1381-1177http://www.sciencedirect.com/science/article/pii/S1381117714001805

Robert J. Ahern, John P. Hanrahan, Joseph M. Tobin, Katie B. Ryan, Abina M. Crean, Comparison of fenofibrate–mesoporous silica drug-loading processes for enhanced drug delivery, European Journal of Pharmaceutical Sciences 50 (2013) 400–409

Robert J. Ahern, John P. Hanrahan, Joseph M. Tobin, Katie B. Ryan, Abina M. Crean, Comparison of fenofibrate–mesoporous silica drug-loading processes for enhanced drug delivery, European Journal of Pharmaceutical Sciences, Volume 50, Issues 3–4, 20 November 2013, Pages 400-409, ISSN 0928-0987 http://www.sciencedirect.com/science/article/pii/S0928098713003400

Davide Barreca, Mark P. Copley, Andrew E. Graham, Justin D. Holmes, Michael A. Morris, Roberta Seraglia, Trevor R. Spalding, Eugenio Tondello, Methanolysis of styrene oxide catalysed by a highly efficient zirconium-doped mesoporous silica, Applied Catalysis A: General, Volume 304, 10 May 2006, Pages 14-20, ISSN 0926-860Xhttp://www.sciencedirect.com/science/article/pii/S0926860X06001013

Paul Delaney, Healy RM, Hanrahan JP, Gibson LT, Wenger JC, Morris MA, Holmes JD. Porous silica spheres as indoor air pollutant scavengers. Journal of Environmental Monitoring. 2010 Dec;12(12):2244-51. doi: 10.1039/c0em00226g.http://www.ncbi.nlm.nih.gov/pubmed/20941430

Tahnee J. Deninga,1, Dmitry Zemlyanovb, Lynne S. Taylora, Application of an adsorption isotherm to explain incomplete drug release from ordered mesoporous silica materials under supersaturating conditions, Journal of Controlled Release 307 (2019) 186–199

Jessica Fordea, Alex Vakurovb, Tim D. Gibsonb, Paul Millnerb, Mícheál Whelehana, Ian W. Marisona, Ciarán Ó’Fágáina, Chemical modification and immobilisation of lipase B from Candida antarctica onto mesoporous silicates, Journal of Molecular Catalysis B: Enzymatic 66 (2010) 203–209

Tomer Lapidot, Omar K. Matar, Jerry Y.Y. Heng, Calcium sulphate crystallisation in the presence of mesoporous silica particles: Experiments and population balance modelling, Chemical Engineering Science 202 (2019) 238–249

Carol A. McCarthy, Waleed Faisal, Joseph P. O’Shea, Colm Murphy, Robert J. Aherne, Katie B. Ryan, Brendan T. Griffin, Abina M. Crean , In vitro dissolution models for the prediction of in vivo performance of an oral mesoporous silica formulation, Journal of Controlled Release, Volume 250, 28 March 2017, Pages 86-95

K. Lamb, R.A. Mole, D. Yu, R. de Marco, J.R. Bartlett, S. Windsor, S.P. Jiang, J. Zhang, V.K. Peterson, Proton dynamics in phosphotungstic acid impregnated mesoporous silica proton exchange membrane materials, Green Energy & Environment (2017), doi: 10.1016/ j.gee.2017.06.007.

Mareike Siebert∗, Thorben Detering, Ralf G. Berger, An immobilized fungal chlorogenase rapidly degrades chlorogenic acid in a T coffee beverage without altering its sensory properties, LWT – Food Science and Technology 115 (2019) 108426

Sugata P. Tan*, Elizabeth Barsotti, Mohammad Piri, Application of material balance for the phase transition of fluid mixtures confined in nanopores, Fluid Phase Equilibria 496 (2019) 31e41

Laura J. Waters a,⇑, Talib Hussain a, Gareth Parkes a, John P. Hanrahan b, Joseph M. Tobin, Inclusion of fenofibrate in a series of mesoporous silicas using microwave irradiation, European Journal of Pharmaceutics and Biopharmaceutics 85 (2013) 936–941

Laura J. Waters, Talib Hussain, Gareth Parkes, John P. Hanrahan, Joseph M. Tobin, Inclusion of fenofibrate in a series of mesoporous silicas using microwave irradiation, European Journal of Pharmaceutics and Biopharmaceutics, Volume 85, Issue 3, Part B, November 2013, Pages 936-941, ISSN 0939-6411http://www.sciencedirect.com/science/article/pii/S0939641113002816

Related Products