MCM
Since their discovery in the late 1970s mesoporous silicas have attracted much attention due to their unique ordered pore structures, very high specific surface areas and range of morphologies that can be synthesised for examples spheres rods, discs and powders. Unlike traditional porous silicas, mesoporous silicas exhibit unusually ordered pores due to the nanotemplating approach applied during synthesis. Over the past 30 years a plethora of mesoporous silicas (SBA 15, SBA 16 MCM 41, 48 etc.) have been synthesised with a wide ranging pore geometries (Hexagonal, Cubic etc.) and particle morphologies e.g Discs, Spheres, Rods etc.
Glantreo has vast knowledge in the manufacture of Mesoporous Silica (MS). For almost 5 years we have supplied large quantities (up to kg quantites) of Mesoporous Silica to our Researcher and Industry partners.
In addition to the raw and functionalised materials we also offer all variations in pelletised formats. The pellets are available in 2mm x 5mm. Please enquire to discuss your requirements in more detail.
Product Data and References
Applications that our Mesoporous Silicas have been used for include:
+ Phospholipid/phosphoprotein removal
+ Chromatography
+ Drug Delivery
+ Hard Templating
+ Immobilization of Bioactive Molecules
+ Encapsulation of natural oils, flavours and heat sensitive additives
+ Polymer Reinforcement
+ Catalysis
+ Theoretical Confinement Studies
Typical Physical Properties
Particle Type | MCM-41 | MCM-48 |
Purity | 99.99% | 99.99% |
Particle Sizes | 100um | 10um & 150um (MCM-48 Aluminosilicate) |
Particle Morphology | Hexagonal | Cubic |
Pore Sizes | 25A & 30A (MCM41-Aluminosilicate) | 25A & 30A (MCM41-Aluminosilicate) |
Formats | Powders & Pellets | Powders & Pellets |
Chemistries | Raw, Amine, Thiol | Raw, Amine, Thiol |
Product Variations
Product Code | Type | Pore Morphology | Format | Particle Size | Pore Size | Pack Size | Chemistry |
---|---|---|---|---|---|---|---|
PMCM4110025R-5 | MCM-41 | Hexaganol | Powder | 100um | 25A | 5g | Silanol/Raw |
PMCM4110025NH1-5 | MCM-41 | Hexaganol | Powder | 100um | 25A | 5g | Amine |
PMCM4110025SH1-5 | MCM-41 | Hexaganol | Powder | 100um | 25A | 5g | Thiol |
PMCM4110025R-50 | MCM-41 | Hexaganol | Powder | 100um | 25A | 50g | Silanol/Raw |
PMCM4110025NH1-50 | MCM-41 | Hexaganol | Powder | 100um | 25A | 50g | Amine |
PMCM4110025SH1-50 | MCM-41 | Hexaganol | Powder | 100um | 25A | 50g | Thiol |
PMCM41AL10030R-50 | MCM-41 Aluminosilicate | Hexaganol | Powder | 100um | 30A | 50g | Silanol/Raw |
PMCM41AL10030R-5 | MCM-41 Aluminosilicate | Hexaganol | Powder | 100um | 30A | 5g | Silanol/Raw |
PMCM41AL10030NH1-5 | MCM-41 Aluminosilicate | Hexaganol | Powder | 100um | 30A | 5g | Amine |
PMCM41AL10030SH1-5 | MCM-41 Aluminosilicate | Hexaganol | Powder | 100um | 30A | 5g | Thiol |
PMCM41AL10030NH1-50 | MCM-41 Aluminosilicate | Hexaganol | Powder | 100um | 30A | 50g | Amine |
PMCM41AL10030SH1-50 | MCM-41 Aluminosilicate | Hexaganol | Powder | 100um | 30A | 50g | Thiol |
PELMCM4110025R-5 | MCM-41 Pellets | Hexaganol | Pellets | 100um | 25A | 5g | Silanol/Raw |
PMCM481025R-5 | MCM-48 | Cubic | Powder | 10um | 25A | 5g | Silanol/Raw |
PMCM481025NH1-5 | MCM-48 | Cubic | Powder | 10um | 25A | 5g | Amine |
PMCM481025SH1-5 | MCM-48 | Cubic | Powder | 10um | 25A | 5g | Thiol |
PMCM481025R-50 | MCM-48 | Cubic | Powder | 10um | 25A | 50g | Silanol/Raw |
PMCM481025NH1-50 | MCM-48 | Cubic | Powder | 10um | 25A | 50g | Amine |
PMCM481025SH1-50 | MCM-48 | Cubic | Powder | 10um | 25A | 50g | Thiol |
PMCM48AL15030NH1-5 | MCM-48 Aluminosilicate | Cubic | Powder | 150um | 30A | 5g | Amine |
PMCM48AL15030R-5 | MCM-48 Aluminosilicate | Cubic | Powder | 150um | 30A | 5g | Silanol/Raw |
PMCM48AL15030SH1-5 | MCM-48 Aluminosilicate | Cubic | Powder | 150um | 30A | 5g | Thiol |
PMCM48AL15030R-50 | MCM-48 Aluminosilicate | Cubic | Powder | 150um | 30A | 50g | Silanol/Raw |
PMCM48AL15030NH1-50 | MCM-48 Aluminosilicate | Cubic | Powder | 150um | 30A | 50g | Amine |
PMCM48AL15030SH1-50 | MCM-48 Aluminosilicate | Cubic | Powder | 150um | 30A | 50g | Thiol |
PELMCM481025R-5 | MCM-48 Pellets | Cubic | Pellets | 10um | 25A | 5g | Silanol/Raw |
Citations using Glantreo’s materials
If you have published and cited Glantreo’s materials then click here to let us know.
Laura J. Waters a,⇑, Talib Hussain a, Gareth Parkes a, John P. Hanrahan b, Joseph M. Tobin, Inclusion of fenofibrate in a series of mesoporous silicas using microwave irradiation, European Journal of Pharmaceutics and Biopharmaceutics 85 (2013) 936–941
Tan et al, 2019, material balance for the phase transition of fluid mixtures confined in nanopores
Sugata P. Tan*, Elizabeth Barsotti, Mohammad Piri, Application of material balance for the phase transition of fluid mixtures confined in nanopores, Fluid Phase Equilibria 496 (2019) 31e41
Mareike Siebert∗, Thorben Detering, Ralf G. Berger, An immobilized fungal chlorogenase rapidly degrades chlorogenic acid in a T coffee beverage without altering its sensory properties, LWT – Food Science and Technology 115 (2019) 108426
Carol A. McCarthy, Waleed Faisal, Joseph P. O’Shea, Colm Murphy, Robert J. Aherne, Katie B. Ryan, Brendan T. Griffin, Abina M. Crean , In vitro dissolution models for the prediction of in vivo performance of an oral mesoporous silica formulation, Journal of Controlled Release, Volume 250, 28 March 2017, Pages 86-95
Tomer Lapidot, Omar K. Matar, Jerry Y.Y. Heng, Calcium sulphate crystallisation in the presence of mesoporous silica particles: Experiments and population balance modelling, Chemical Engineering Science 202 (2019) 238–249
K. Lamb, R.A. Mole, D. Yu, R. de Marco, J.R. Bartlett, S. Windsor, S.P. Jiang, J. Zhang, V.K. Peterson, Proton dynamics in phosphotungstic acid impregnated mesoporous silica proton exchange membrane materials, Green Energy & Environment (2017), doi: 10.1016/ j.gee.2017.06.007.
Jessica Fordea, Alex Vakurovb, Tim D. Gibsonb, Paul Millnerb, Mícheál Whelehana, Ian W. Marisona, Ciarán Ó’Fágáina, Chemical modification and immobilisation of lipase B from Candida antarctica onto mesoporous silicates, Journal of Molecular Catalysis B: Enzymatic 66 (2010) 203–209
Tahnee J. Deninga,1, Dmitry Zemlyanovb, Lynne S. Taylora, Application of an adsorption isotherm to explain incomplete drug release from ordered mesoporous silica materials under supersaturating conditions, Journal of Controlled Release 307 (2019) 186–199
Robert J. Ahern, John P. Hanrahan, Joseph M. Tobin, Katie B. Ryan, Abina M. Crean, Comparison of fenofibrate–mesoporous silica drug-loading processes for enhanced drug delivery, European Journal of Pharmaceutical Sciences 50 (2013) 400–409
Davide Barreca, Mark P. Copley, Andrew E. Graham, Justin D. Holmes, Michael A. Morris, Roberta Seraglia, Trevor R. Spalding, Eugenio Tondello, Methanolysis of styrene oxide catalysed by a highly efficient zirconium-doped mesoporous silica, Applied Catalysis A: General, Volume 304, 10 May 2006, Pages 14-20, ISSN 0926-860Xhttp://www.sciencedirect.com/science/article/pii/S0926860X06001013
Laura J. Waters, Talib Hussain, Gareth Parkes, John P. Hanrahan, Joseph M. Tobin, Inclusion of fenofibrate in a series of mesoporous silicas using microwave irradiation, European Journal of Pharmaceutics and Biopharmaceutics, Volume 85, Issue 3, Part B, November 2013, Pages 936-941, ISSN 0939-6411http://www.sciencedirect.com/science/article/pii/S0939641113002816
Robert J. Ahern, John P. Hanrahan, Joseph M. Tobin, Katie B. Ryan, Abina M. Crean, Comparison of fenofibrate–mesoporous silica drug-loading processes for enhanced drug delivery, European Journal of Pharmaceutical Sciences, Volume 50, Issues 3–4, 20 November 2013, Pages 400-409, ISSN 0928-0987 http://www.sciencedirect.com/science/article/pii/S0928098713003400
Noreldeen H. Abdallah, Miriam Schlumpberger, Darragh A. Gaffney, John P. Hanrahan, Joseph M. Tobin, Edmond Magner, Comparison of mesoporous silicate supports for the immobilisation and activity of cytochrome c and lipase, Journal of Molecular Catalysis B: Enzymatic, Volume 108, October 2014, Pages 82-88, ISSN 1381-1177http://www.sciencedirect.com/science/article/pii/S1381117714001805